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Abstract-The cycle of operation of a thermal regenerator is discontinuous and consists of the passage of 
a hot fluid through the channels of the heat storing packing for a fixed length of time followed by the 
passage of a cold fluid, usually in the contra-flow direction through the same channels during another 
predetermined period. It is shown that a model of the equivalent thick-walled recuperator, which is 
continuous in operation, can be employed to calculate the transient response of a regenerator to step 
changes in operation. This continuous approach enables existing and possibly new transfer function 
models for recuperators to be applied to regenerators, and thence to the feedforward computer control of 

regenerator systems. 

NOMENCLATURE 

heating surface area [m’] ; 
specific heat of storing matrix [J kg- ‘, 

deg Kl ; 
bulk heat transfer coefficient 

CW m -2,degK]; 
coefficient of heat exchange 

[Wm -2,degK]; 
length of regenerator [m] ; 
mass of heat storing matrix [kg] ; 
mass of gas resident in heat exchanger 

kl ; 
length of operating period [s] ; 
quantity of heat exchanged [J me21 ; 
specific heat of gas [J kg- ‘, deg K] i 
temperature of heat storing matrix 

[deg Kl ; 
temperature of gas [deg K] ; 
mass flow rate of gas [kg s-l] ; 
distance from regenerator entrance [ml. 

Greek symbols 

8, degree of unbalance A’II”/A”II’; 

713 ratio of reduced periods lT’/II’; 

Y2? ratio of reduced lengths A”/A’; 
EgI,Eg2, dimensionless measure of the transient 

response ; 
dimensionless time; 
thermal ratio; 
time [s] ; 
reduced length hA/WS [dimensionless] ; 
dimensionless length; 
reduced period hA(P-mJW)/MC 
[dimensionless]. 

Subscripts 
in, inlet; 

X, exit ; 
m, mean ; 
H, harmonic mean. 

Superscripts 

refers to hot period ; 
I, refers to cold period. 

INTRODUCTION 

THE REPRESENTATIVE differential equations of the 
dynamic behaviour of a thermal regenerator system 
were established by Nusselt [l] and Hausen [2]. 
These equations represent the transfer of heat 
to/from the fluid, usually a gas, passing through the 
channels of the regenerator packing or 

“chequerwork”, 

I;A(T-t)= wS~g+mSg, (1) 

and the storage of thermal energy in that 
chequerwork, 

aT 
I;A(t-T) = MC=. (2) 

These equations are applied first to the hot period 
of operation during which heat is absorbed by the 
packing from the hot gas. At the reversal, a 

discontinuity in operation occurs when the hot gas is 
shut off and cold gas is passed through the same 
channels usually in the contra-flow direction for the 
duration of the cold period. The temperature 
behaviour of the regenerator in this cold period may 
be simulated by solving equations (1) and (2) again. 
The cold period is terminated by another reversal. 

The discontinuity at the change-overs manifests 
itself in the mathematical model distinctly. Firstly, 
integration of the equations proceeds in the direction 
of gas flow and this is reversed at the end of each 
period for contra-flow operation. Secondly, the 
boundary conditions specify that the solid tempera- 
ture distribution at the start of a period is equal to 
that at the end of the previous period. When the 
direction y is measured always in the direction of gas 
flow with origin at the gas entrance to the packing, 
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these boundary conditions are written in the form of 
equations (3) and (4): 

T”(J, 0) = T’(L -J’, P’) (3) 

T’(_r, 0) = T”(L -y, p”). (4) 

In its simplest form, the model embodies the 
following assumptions: 

(1) The heat transfer coefficients and thermal 
properties of fluids and solid packing do not vary 
with space and time in either the hot or the cold 
period of operation although the values in one 
period may be different from the opposite period ; 

(2) The gas flow rates are constant in each period; 
(3) Longitudinal conduction of heat (in the direc- 

tion of gas flow) in the solid packing is neglected ; 
(4) Internal resistance within the packing to heat 

transfer in a direction perpendicular to gas flow is 
embodied within a bulk heat transfer I;, in a manner 
proposed by Hausen [3] and discussed in detail by 

Willmott [4]. 

During each period of operation, the gas and solid 
temperatures in a regenerator vary with time. 
Although at cyclic equilibrium, which becomes 
manifest after many cycles of identical operation, the 

performance of the regenerator remains unchanged 
from one cycle to the next, it is common to describe 
this performance employing time mean exit gas 
temperatures. In particular, the thermal ratios &i-C; 
and &,cG are used to measure the equilibrium 

effectiveness of the regenerator. 

Willmott and Burns [5], following the scheme of 

London et ul. [6] employed these tinze trieuii exit gas 
temperatures to describe the response’ of the re- 
generator to step changes in operation. The hot side 
response ag, and the cold side response cg, are 
defined in equations (7) and (8) in terms of the time 
mean exit gas temperatures at cyclic equilibrium 
before the step change, t:,,(O) and t’&,(O), and when 
the new equilibrium is established following the step 
change in operation, &,(cc~) and Z:,,,(X). At the nth 
cycle following the step change, the time mean exit 

temperatures are t:,,(n) and t’&,,(n) and the re- 
sponses are: 

The use of these responses EC/, and Eg2 in this form 
overcomes the difficulty of representing the super- 
position of changes in the thermal performance of a 
regenerator hetwrrti one cycle and the next, and the 
continuously varying gas and solid temperatures 

the discontinuous nature of the thermal regenerator 
operation and its representative model makes it very 
difficult to apply conventional distributed system 
theory in order to develop transfer functions describ- 
ing the transient performance of a regenerator 
following changes in operation. Such transfer func- 
tions should greatly facilitate the feedforward 

control of systems of regenerators in environments 
where the operating conditions or the thermal 
demands vary with time. 

In contrast the hot and cold fluids pass simul- 
taneously and continuously through the recuperative 

heat exchanger (or “recuperator”), separated by a 
partition wall through which heat is transferred from 
one fluid to another. Is it possible to predict 
regenerator dynamic behaviour using a continuous 
model of a recuperator? 

If so, the transfer functions developed by Gilles [7], 
Burns ef ul. [8] and Burns [Y] can be applied to 
regenerators as well as recuperative heat exchangers. 

Problems are known tc exist in the regulation of 
large regenerator systems where operating con- 
ditions are unsteady; for example, Beets and Elshout 

[lo] discuss the need to control by computer the 
Cowper stoves employed to preheat the air for blast 
furnaces. 

Three factors determine the thermal inertia of the 
regenerator [5], namely: (i) the magnitude of the 
heat transfer coefficients; (ii) the ratio of the surface 
area of the packing of the regenerator available for 
heat transfer between gas and solid and the heat 
capacity flow rates of the gases passing through the 
regenerator; and (iii) the ratio of the same heating 
surface area and the thermal capacity of the 
regenerator packing. For a recuperator to have the 
same thermal inertia characteristics as a regenerator. 
one should expect the partition wall of the re- 
cuperator to have the same heat capacity as the 
packing of the regenerator (we therefore introduce 
the term “thick walled recuperator”), for the hot and 
cold gas flow rates to be the same for both devices 
and for the hot/cold period heat transfer coefficients 
for the regenerator to apply to the hot/cold gas 
streams for the equivalent recuperator. Most impor- 
tant, the area of the packing available for heat 
transfer between gas and solid in the regenerator 
should be replicated by the area of the partition wall 

exposed to the hot gas stream trrin by the area of the 
wall exposed to the cold gas stream. This implies 
that the total heating surface area for the regenerator 
is half that of the equivalent recuperator. 

The mathematical model of the recuperator re- 
flects the continuous operation of this type of heat 
exchanger. No discontinuities equivalent to the 
regenerator reversals are involved. Provided the 
dynamic characteristics of the regenerator and those 
of the equivalent recuperator are in some agreed 
sense the same, this continuous recuperator model 
can be used to predict the transient performance of a 
periodic flow regenerator. The computer simulation 

within each and every cycle of operation. However experiments reported later in this paper verify the 
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equivalence of the conventional regenerator model 

and the recuperator model for regenerator transient 
behaviour calculations. 

What is not immediately clear from these empiri- 
cal considerations is how differences in the durations 

of the hot and cold periods, P’ and P” of regenerator 
operation can be embodied in the equivalent re- 
cuperator model. This will be discussed. 

COMPARISONS BETWEEN THE 
GOVERNING EQUATIONS OF THE 

REGENERATOR AND THE RECUPERATOR 

The equations in dimensionless form describing 

recuperator behaviour are [9] : 

g = (t’-T)+yl(t”-T) 

at -= T-t’ 
a<* 

(9) 

(10) 

where 

ag* = yz (t” - 7-1, (11) 

PA 
)1*=&J 

<* - I;‘A \, 
W'S'L . 

(12) 

(13) 

y, = 1;“/1;’ (14) 

‘/z = A“/,,, (15) 

with 

(16) 

(17) 

The corresponding equations for regenerators are 
yielded by applying the dimensionless parameters < 
and q to equations (1) and (2). These are 

(18) 

It is important to recognize that “zero period” is a 

mathematically limiting condition and not a physical 
condition. It is assumed in this work that in taking 
this limit the cold/hot gas residing in the regenerator 

at the start of the hot/cold period is evacuated before 
the hot/cold gas starts to flow through the re- 
generator and furthermore, this evacuation of the 
cold/hot gas and the initial entry of new hot/cold gas 

at the beginning of the period does not influence the 
temperature of the regenerator packing. This must be 
distinguished from the physical conditions described 

by Heggs and Carpenter [12] and Willmott and 
Hinchcliffe [13] in which, as the period lengths are 
shortened, a body of gas is trapped in the packing 
thereby influencing the overall temperature be- 
haviour of the regenerator. 

Consider the 2-D equations (18) and (19) as they 

apply to the behaviour of a hot period. 

(21) 

For a hot period of length n’ short enough, the local 
change in solid temperature AT’ during the hot blow 
can be expressed approximately as 

where dimensionless time II’ is measured from the 

start of the hot period. Hence 

AT’ = (t'- T')W, (23) 

where t’ and T' are the gas and solid temperatures at 
the start of the period. If t” and T" are the 
corresponding values at the start of the following 

cold period then it is possible to write 

AT” = (t” - T”)n”. (24) 

Now T" = T’+AT’; therefore if the product term 
ATTI” can be neglected (being of order A’, since 
both AT and II” are “small”) then equation (24) can 
be rewritten as 

AT” zz (t”- T’)n”. (25) 

Nusselt [l] and Rummel [l l] suggested for cyclic 
equilibrium conditions that the limiting performance 
of the regenerator with zero period lengths is the 
same as that of the equivalent recuperator. 

In the following analysis it will be shown that the 
equations governing the behaviour of the regene- 
rator are equivalent to those of a corresponding 
recuperator, in the limit, as the period length tends 
to zero. This indicates the fundamental similarity 
between the two models. It is then assumed that 
regenerators operating with non-zero periods can be 
simulated approximately using this recuperator ana- 
logy. The acceptability of this approximation is 
verified by computer simulation. 

The total temperature change 6T over a complete 
cycle of duration n’+II” is given by 6T = AT 
+AT”. At cyclic equilibrium AT’ +AT” = 0. How- 
ever in transience AT’ +AT” represents the change 

in solid temperature in time XI = n’ +n”. Let r 

= KI’/(n’+lT’) a constant. The average rate of solid 
temperature change as 6II becomes very small is 
given by 

3T - 
p=,Jjyog=r(rc-T)+(l-r)(t'.-~). (26) 
aif 

Finally a change of variable is made, 

i = ‘r/l, (27) 
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in which case equation (26) takes the form 

$ = (t’- T) + ;; (t”- T). (28) 

In the previous section the differential equation (9) 

describing the accumulation of thermal energy in the 
partition wall for the recuperator was presented: 

g = (I’- q+y, (t”- T), 

where y, = V/i?. 
A comparison between equations (28) and (9) 

reveals that in order to complete the mapping 
between the time scale used for the regenerator 
operation [ and that used for the normal recuperator 
equivalent v* a constant factor of I’I’/(IT’ + II”) needs to 
be employed. The use of < represents the concept in the 
model that the effect of the hot and cold gasses which 
pass alternatively in time n’+ II” over the regenerator 
packing, is achieved in time II’ in the equivalent 
recuperator model. The appearance of 
I’I”/W = /?P”/RP’ in equation (28) instead of h”/&’ in 
equation (9) represents a further normalisation which 
takes into account that the heat transfer coefficient li’ is 
active in the regenerator for a period P’, and h” for time 
P” whereas in the recuperator both heat transfer 
coefficients are “active” on either side of the partition 
wall simultaneously. 

The equations representing the behaviour of the 
gases in the regenerator model are: 

r7t’ -= T-t’ 
ai’ 

where 
I;‘Ay’ 

l’ = w’s’L 

with 

If equations (20) and (29) are both placed on the 
same dimensionless distance parameter <*. where 

then 

But 
A” 

Y2 = r 

Therefore the system equations describing the limit- 
ing behaviour of a regenerator with zero period 
lengths are: 

6%’ 

F = T-f’ 
at” - = j(2(f’- T) 
air* 

!g = (I’- T) + ; (f’_ T), (33) 

which are of identical form to those describing the 
recuperators transient behaviour (equations 

(9)~(11)). 
The recuperator analogy is developed from con- 

siderations of the performance of a regenerator when 
the cycle time is very short. Under such circum- 
stances, little variations of gas or solid temperature 
can take place within a cycle of regenerator 
operation. Consequently the gas and solid tempera- 
tures within the regenerator are equal to the 
corresponding gas and solid temperatures in the 
recuperator. In order to extend the application of the 
recuperator analogy to regenerators running with 
longer cycle times and where significant variations of 
gas and solid temperatures take place, it is necessary 
to assume: 

(I) The local chronological average gas tempera- 
tures for the hot and cold periods in the regenerator 
are equivalent to hot and cold gas stream tempera- 
tures at the corresponding positions in the 
recuperator; 

(2) The partition wall temperature, at any parti- 
cular position in the recuperator, is equivalent to the 
time mean solid temperature at the same position in 
the regenerator, the average being taken over the 
whole cycle of operation. 

In order to investigate the applicability of these 
assumptions it is necessary to develop a numerical 
solution for simulating the transient behaviour of the 
recuperator. The transient responses of the re- 
generator and its equivalent thick wall recuperator 
can then be compared over a wide range of 
parameters. 

PREVIOUS USE OF RECUPERATOR ANALOGY 

Although, as far as we can ascertain, a model of a 
recuperator equivalent to a regenerator in the form 
of the differential equations (31)-(33) has not been 
presented before, certainly a simple recuperator 
analogy of the regenerator was developed by 
Runtmel [ 1 I] and Hausen [ 14.31 for cyclic equilib- 
rium calculations. Rummel and Hausen introduced a 
“coefficient of heat interchange” K, between hot and 
cold gas in the recuperator, implicitly in the 
regenerator. Employing the bulk heat transfer coef- 
ficient li introduced by Hausen [3] and making the 
assumption that the temperature difference between 
gas and solid does not vary with time in the 
regenerator, and similarly that the temperature 
difference between hot gas and cold gas in the 
equivalent recuperator is time invariant one can 
specify that the quantity of heat Q, exchanged in a 
complete period of regenerator operation per unit 
area should be at any position in the packing: 

(1) Equal to the heat transferred per unit area 
from gas to solid in the hot period: 

I;‘(?‘- T’)p’ = Q,,: (34) 
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(2) Equal to the heat transferred per unit area 

from solid to gas in the cold period; 

r;“(,,,-,“),, = Q,; (35) 

(3) Equal to heat transferred per unit area in time 
P’+P” from hot to cold gas in the equivalent 
recuperator: 

K,(t’- t”)(p’+ P”) = Q,. (36) 

But at any position in the recuperator, 

Q-t”) = (t’-_‘)+(T”-t”)+(T’-T”). (37) 

Further, T’ is equal to T”, the temperature of the 
partition wall in the equivalent recuperator at steady 
state. It follows that 

Q, _ Q, I _QP 
Ic,(P'+F) l?P' h"P" 

or 

&= {&+&P+P’o. (38) 

This scaling of the bulk heat transfer coefficients, 
namely I;‘P’/(P’+P”) and i?‘P”/(P’+P”) within the 
coefficient K, corresponds to the appearance of 
K’P”/li’P’ in equation (33) instead of P/h’ in equation 
(9). The development of equation (38) by Rummel 
and Hausen explicitly maps the transfer of heat 
within the hot and cold periods of regenerator 
operation onto a period’ P’ +P” of equivalent 
recuperator operation. 

However this simple model of Rummel and 
Hausen excludes the possibility of studying theoreti- 
cally the transient performance of the regenerator 
when it is not at cyclic equilibrium. The necessity 
does not arise therefore of developing a time scale of 
the form of {, which is required in the model set out 
here and which allows the chronological variations 
of the equivalent recuperator behaviour not at 
steady state to be related to the variations with time 
of the transient performance of the regenerator. 

NUMERICAL SOLUTION OF RECUPERATOR 
ANALOGY EQUATIONS 

Willmott [ 151 suggested a finite difference solution 
to the differential equations (18) and (14) for the 
regenerator. Two alternative developments of this 
method have been made for the recuperator equa- 
tions (9), (10) and (11). Integration takes place over a 
grid, in the direction of hot gas flow t* and in the 
time q* direction. However, the boundary conditions 
are specified at t* = 0 where the hot inlet gas 
temperature is ti,, and at t* = A’ where the cold gas 
inlet temperature is t:‘,. As a consequence, the 
problem of obtaining numerical solutions to the 
differential equations is of the boundary value type. 

Equations (9) and (10) can be reduced into the 
following forms employing the trapezoidal method: 

C+,.s= A;C,s+A;(T,+,.,+T,,s) (39) 

t I, r+l.s = A;‘t:+2,s+A;‘(T,+l.,+T1+2,s), (40) 

where 

The suffix r,s refers to a position VA<* from the hot 
gas entrance at time sA<*. The suffix r + 2, appearing 
in equation (40), represents the contra flow of the 
cold gas with respect to the direction t*. 

In a similar way equation (9) can be manipulated 
using the trapezoidal rule: 

T r.s+ 1 = Bl T,s+fb(t:,,+ 1 + C,,) 

f~,@~,,.l + C,s), (41) 

where 

B 

1 
= 2-&*(I +~1) 

2+Ar?*U +Y,) 

B, = A?* 

2+Ar?*(l +Y,) 

B, = y~Bz. 

It is specified that r = 0 denotes the hot gas entrance 
and r = m, the cold gas entrance where mA<* = A’. 
The boundary conditions are therefore formulated: 

(i) tb,, = tin 

(ii) tk,s = trn 
for all s 

(iii) T,,, is defined arbitrarily for all r. 

The boundary value problem can be solved through 

a matrix formulation, in which case the values oft:,,, 
t:,s and T,,S (r = 0,1,2,. . . , m) at the successive time 
intervals are obtained by solving a set of simul- 
taneous linear equations. 

Alternatively a shooting method can be employed 
in which integration in the <* direction from the hot 

gas entrance is attempted. The inlet temperature of 
the hot gas stream is specified and provides one 
starting condition; in order to integrate “against the 
flow” of the cold gas stream, an estimate of the exit 
temperature of this cold gas is used as the other 
starting condition for the integration of the differen- 
tial equations. The integration is repeated systemati- 
cally at each time step and the cold gas exit 
temperature adjusted so that the correct inlet cold 
gas temperature is computed. Although the shooting 
method involves no matrix inversions, it requires up 
to 3 iterations per step in comparison with the 
explicit matrix method which is described below. A 
more detailed discussion of both methods is de- 
scribed by Burns [9]. 

Matrix,formulation 
Equations (39), (40) and (41) can be written in 

matrix form 

UP+’ = Vf”+C. (42) 
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The matrix U is 

1 
-B, 1 -B3 

-‘4; 1 

--A; -A; 0 

and V is 

0 

0 0 

B, B, Bz 
. . . 
. * , 

0 0 

0 0 0 

B2 B, B3 

0 0 

L- 1 

A;’ 

-A’, A’, 

0 0 

Bz & B3 

0 0 

0 

0 

0 -A; _A;’ 

1 -A; 

-B2 1 -B, 

1 0 A; -A;’ 

0 1 -A; 

-8, 1 -B, 
I 1 

Now f” is the column vector of temperatures for time 
sAv* from the start of the period under consideration 
where 

and C is the column vector containing the boundary 
conditions, 

c = {cl,, 0, 0, . . . ,o, t’i’,} . 

The integration procedure consists of initially 
calculating the gas temperatures on both sides of the 
partition wal1 at the start of the period under 
consideration employing equations (39) and (40) 
successively for r = 0,1,2,. . ,m - 1. For all sub- 
sequent time steps, the vector fs+’ is obtained by 
solving the matrix equation (42). At the start of the 
period, the wall temperature is specified arbitrarily 
or at the equilibrium conditions immediately prior to 
a step change in operation. Equation (42) can be 
formulated as 

f”+’ = U-‘VfS+U-‘C. 

So long as step changes in inlet gas temperatures are 
considered alone, the matrices IL-‘V and Lf-’ 
remain unaltered and need be computed just once in 
the calculation. However, with step changes in gas 
flow rate, these matrices must be re-computed and 
the speed of the method is greatly determined by the 
algorithm used to invert the band matrix U. 

EFFECTIV~N~ OF RECUPERATOR ANALOGY 

Transient perfbrmance of regenerators 
A number of computational experiments are now 

reported in which the transient performance pre- 
dicted by the recuperator analogy is compared with 
that predicted by the regenerator model. In making 
the comparison, it is important to note that 
chronological uaeraye temperatures for hot/cold 
periods of regenerator model performance are com- 
pared with temperatures in the recuperator analogy 
at times equivalent to the end of the corresponding 
cycle of regenerator operation. This follows from the 
consideration that whereas the regenerator packing 

is subject sequentially to the effect of the hot and 
then the cold gas passing through the regenerator, 
the gases, both hot and cold, pass on either side of 
the recuperator partition wall simultaneously and 
that the effect of a whole set of cycles of regenerator 
operation will only become manifest in the re- 
cuperator analogy at a time equivalent to the end of 
such a set of cycles. 

I 00 

080 Regenerator models 

n iI’- rI”=o.l 
x n’=n”=I 
* n’_;n”= * 

0 60 0 n’= n”= 5 

$ 

0.40 

Recupemtor model 

0 20 

0 20 40 60 80 

Dlmensmnless time 

5 , For regenerator model 

v*, For recuperator analogy 

Fw. 1. Hot side response to a step change in hot side inlet 
gas temperature reduced length A’ = A” = 10. 

The simplest case is the symmetric regenerator and 
Fig. 1 illustrates such a comparison where the hot 
side response (the response in hot gas exit gas 
temperature) to a step change in inlet temperature is 
considered for the case where the reduced length, A’ 
= A”, is equal to 10. The continuous line illustrates 
the response predicted by recuperator analogy: the 
spot positions are responses predicted by the 
regenerator model employing reduced periods, II 
= II”, equal to 0.1, 1.0, 2.0 and 5.0. Although the 
agreement between the models deteriorates as re- 
duced period increases, as one might expect, the 
agreement between regenerator model and recupe- 
rator analogy is none-the-less excellent. Figure 2 
provides a comparison for the cold side response to a 
step change in hot inlet temperature for the same 
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f 

Reganemtw models 

n n’=n”=o.l 

x n,=l-y=, 

* l-I’= Il”= 2 
0 n’= n-=5 

Recuperator model 

K=lO 
y’= y” , 

I I I I 
20 40 60 80 

Dlmenslonless time 

FIG. 2. Cold side response to a step change in hot side inlet 
gas temperature. 

1 A-15 / h-10 

_I 
0 I 2 3 4 5 

Reduced period n = n’ = n” 

FIG. 3. Maximum relative error between the regenerative 
and recuperative models’ symmetric configurations. 

range of parameters. The agreement is much better 
in this case. 

These two diagrams illustrate that for most of the 
response period until cyclic equilibrium or steady 
state performance is restored, it is difficult to 
distinguish between the response temperatures pre- 
dicted by the regenerator or its recuperator analogy. 
We have therefore computed the maximum relative 
error over the duration of transient response to a hot 

inlet gas temperature step change, of the hot (and 
cold, but the largest error always occurs on the same 
side as that of the step change) exit temperature 
predicted by the recuperator analogy compared with 
that predicted by the regenerator model for a range 
of reduced periods 0 < II d 5 (II’ = II” = II) and the 

reduced lengths 5, 10 and 15. (See Fig. 3.) It will be 
seen that this maximum relative error increases both 
with reduced length and reduced period. 

Willmott and Burns [S] showed that the longer 

the reduced length, the more inert the regenerator 
system. It follows that as reduced length increases, 
the more protracted will be the response period and 

the greater the need to predict accurately the path of 
this response. None the less, a maximum relative 
error of less than 8% is quite good if it is borne in 

mind that for most of the response period, the 
relative error will be a good deal less. Further, these 
maximum errors occur near the beginning of the 
transient period when .sgi and sg2 are close to zero 

and when, as a consequence, small absolute errors 
become comparatively large relative errors. 

I 

0 

-I 

-2 

-3 

-4 

-5 - 

it Regenerator model 

Recupemta model 

I I I I 
_^ ._ 

” Z” 4” 6” 

Dimensionless time 

8” / 0 

FIG. 4. Response to a simultaneous step change in hot inlet 
gas temperature and hot side gas flow rate. 

Finally, the ability of the recuperator analogy to 

predict the effect of simultaneous step changes in hot 
inlet gas temperature and hot side flow rate is illus- 
trated. Since it is assumed here that the heat transfer 

coefficient between gas and solid and gas flow rate 
are linearly proportional, the reduced length A’ is 
not affected by the change in flow rate (see Burns [ 161). 
For the regenerator model, the initial value of hot 
side reduced period is II&u = 3.0 and the final value 
after the step change is lThEw = 2.0, representing the 
change in hot side flow rate. For the recuperator 

model, ~i,o~u = II”/II~LD is used before the step 
change and ~i,~r~ = II”/II~Ew is employed after the 
step change in equation (9). The resulting transient 
responses are’ illustrated in Fig. 4. Only the hot side 

response in the first three cycles of regenerator 
performance are predicted comparatively poorly by 
the recuperator model and it is clear that further 
work in this particular area is now required. None 
the less, the ability of the recuperator analogy to 
predict the overall response in this more complex 
situation is quite good. 

CONCLUSIONS 

It is becoming increasingly important to be able to 
regulate the operation of regenerators under con- 
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ditions of time varying thermal load and input 
energy availability, and to do so with maximum 
thermal efficiency. Beets and Elshout [lo] and 
Strausz [ 171 describe computer controlled Cowper 
stove systems based on conventional regenerator 
theory. In this paper we are looking towards 
computationally compact algorithms which can be 
implemented on microprocessor on-line control 
systems in which the likely performance of a 
regenerator following step changes in operation can 
be predicted and thus regulated. Burns et al. [S] and 
Gilles [7] show how conventional control theory can 
be applied to the recuperator analogy to yield 
transfer functions and thus simple predictive algor- 
ithms for regenerator performance. This paper 
establishes the foundations of this work by securing 
the relationship between the discontinuous model of 
the regenerator and the more useful continuous 
model of its recuperator equivalent. 
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L’ANALOGIE AVEC LES RECUPERATEURS, DES REGENERATEURS 
THERMiQUES A FONCTIONNEMENT PERlODrQUE 

Rksumi--Le cycle operatoire d’un rigenerateur thermique est discontinu et iI est compose du passage 
d’un fluide chaud a travers les canaux de la matrice de stockage thermique pendant un certain laps de 
temps suivi par un temps de passage d’un fluide froid, generalement a contre-courant du premier passage 
et dans les mimes canaux. On montre d’un modile de rtcuptrateur equivalent a paroi epaisse et a 
fonctionnement continu peut itre employe pour calculer la reponse transitoire dun regintrateur a des 
changements en echelon. Cette approche continue permet B des modeles existants, et a de nouvelles 
fonctions de transfert eventuelles, pour les recuperateurs, d’etre appliques aux rtgenirateurs et par suite 

d’etre appliques a leur ommande en temps reel par des ordinateurs. 

DIE REKUPERATOR-ANALOGIE ZUM INSTATIONAREN VERHALTEN THERMISCHER 
REGENERATOREN 

Zusammenfassung-Der Arbeitszyklus eines thermischen Regenerators ist diskontinuierlich und besteht 
aus der Stromung eines heil3en Fluids durch die Kanaie der Wlrmespeichermasse wahrend eines festen 
Zeitintervalls. gefolgt von der Stromung eines kalten Fluids, normalerweise in Gegenrichtung, durch 
dieselben Kangle wahrend einer weiteren festgesetzten Periode. Es wird nun gezeigt, dal3 ein Model1 des 
squivalenten dickwandigen Rekuperators, der kontinuierlich arbeitet, verwendet werden kann, urn die 
Ubergangsfunktion eines Regenerators bei Anderung der Betriebsweise entsprechend einer Sprungfunk- 
tion zu berechnen. Der kontinuierliche Ansatz macht es moglich, da13 vorhandene und miiglicherweise 
neue Typen von Ubertragungsfunktionen fur Rekuperatoren auf Regeneratoren und damit auf die ProzeR 

regelung von Regeneratorsystemen angewendet werden konnen. 
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PEKYflEPATOPHAfl AHAJIOl-MII PANETA HECTA~MOHAPHMX PETMMOB 
TEnJIOBbIX PErEHEPATOPOB 

AHHo+auw - Tennoeoii pereHepaTop pa60rae-r no npCpbIBHCTOMy UHK”y. COCTOnIUeMy 1(3 npo-rera- 
HHX rOpWIefi xWKOCTH ‘lepe3 KaHaJlbI TeIIJIOaKKyMyJlLipyEOLUeii HaCdJIKU 3a @HKCHpOBaHHbIi-i IlpO- 

MEKyTOK BpCMeHA C IlOCJW,yEOLUWM npOTeKaHHCM XOJIOnHOti XWlKOCTII, 06bFIHO B ,IpOTHBOIlO.NOTHOM 

HanpaeneHmi, repe7 Te xe KaHanbI B Tevemie npyroro 3anaHHoro npoMemyTKa BpeMeHa. noKa3aH0, 

‘IT0 MOneJb SKBHBd.‘ICHTHOrO TOJICTOCTeHHOrO peKy”epaTOpa, pa6OTalWerO B “e”pepbIBHOM pEK&,MC, 

MOX0ZT 6bITb ACnOJb30BaHa nJIFi pa&Ta HeCTaUHOHapHbIX peN,MOB pCreHepaTOpd “pri CTyneH’IaTOM 

H3MeHeHI(II yCJIOBHii er0 pa6OTbI. 3TOT nOnXOLI n03BOJIlleT IIpHMCHATb nJI,l pWI&a perCHepZlTOpOB 

H~cK)IUHeCII, a TaKW2 HOBbIe +yHKULlOHa,IbHbIC MOLWIH “CpeHOCa B pCKy”epaTOpaX. Pe3ynbTaTbl 

,,aC+iTOB MOryT 6bITb HCfIO,Tb30BaHbI 3arCM LJISl COCTaB,JeHHSI nporpaMM 3BM &Ill KOHTPO,W 38 

pd6OTOti pereHepaTOpHbIX CHCTCM. 
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